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Abstract
According to their cellular coreceptor tropism, HIV
variants are termed R5 if  they use CCR5 as a corecep-
tor, whereas viruses with a preference for CXCR4 are
termed X4. The prevalence of  R5, X4 and dual/mixed
(D/M) strains shows considerable variation in differ-
ent patient populations. In treatment naive patients,
R5 strains are found in 80-90 %, compared to only 50-
55 % in patients with antiretroviral exposure. The
most important predictor of  R5 tropism seems to be a
higher CD4 T-cell count in both naïve and antiretrovi-
rally pretreated patients. A low HIV plasma viremia
seems to be associated with R5 tropism only in un-
treated patients. As the benefit of  the new antiretrovi-
ral drug class of  the CCR5 coreceptor antagonists will
be probably limited to the HIV-infected patients har-
bouring R5 strains, determination of  viral coreceptor
tropism has become an important diagnostic prerequi-
site for the treatment of  HIV infection. This review
will focus on current knowledge of  the epidemiology
of  HIV coreceptor tropism.

INTRODUCTION

In addition to CD4 receptors, entry of  human immun-
odeficiency virus requires interaction between the viral
envelope glycoprotein and a secondary cellular recep-
tor [1]. The interaction between these coreceptors and
the virus envelope triggers membrane fusion and virus
entry into human lymphocytes and macrophages. Al-
though a number of  human chemokine receptors have
been shown to mediate viral entry in vitro, only two
coreceptors, named CCR5 and CXCR4, appear to play
a major role in vivo. Both coreceptors were discovered
in the middle of  the 1990s [1, 15-17, 19]. The corecep-
tors were named after the natural chemokines that
usually bind to them. The nomenclature is derived
from the amino acid sequence. For CCR5 receptors
these are the “CC-chemokines” MIP and RANTES,
for CXCR4-receptors it is the “CXC-chemokine”
SDF-1. After the discovery of  the coreceptors, previ-
ous classifícation systems to describe biological HIV
phenotypes which based on syncytium-inducing and
on replicative capacities in different cell lines had been
translated into a classification based on coreceptor
tropism [4, 20]. In brief, HIV variants are now termed
R5 if  they use CCR5 as a coreceptor, whereas viruses
with a preference for CXCR4 are termed X4. R5
strains predominantly infect monocyte-derived
macrophages and activated CD4 cells while X4 strains

can also infect naive and resting T-lymphoid cells. Be-
side strains using exclusively R5 or X4, dual-tropic or
mixed virus populations (D/M) which display a broad
range of  ability to use both CCR5 or CXCR4 corecep-
tors may also arise over the course of  the disease [51].
While pure X4 virus populations are rarely seen in
vivo, the vast majority of  X4 strains present in D/M
populations. As the benefit of  the new antiretroviral
drug class of  the CCR5 coreceptor antagonists will be
probably limited to the HIV-infected patients harbour-
ing R5 strains, determination of  viral coreceptor tro-
pism has become an important diagnostic prerequisite
for the treatment of  HIV infection. To determine tro-
pism, both phenotypic and bioinformatic approaches
are currently in use. While the important caveats of
these methods will be discussed elsewhere in this issue
[6], this review will focus on current knowledge of  the
epidemiology of  HIV coreceptor tropism.

CORECEPTOR TROPISM AND DISEASE
PROGRESSION

Many years before the discovery of  the coreceptors,
elegant studies indicated evidence for a significant role
of  particular viral properties in the course of  the dis-
ease. It was as early as 1988, when the presence of
syncytium inducing variants (which today can be trans-
lated in X4 strains) has been shown to be associated
with disease progression [21, 49]. Numerous studies
had confirmed these early observations [29, 42] and it
is now well established that the switch in the corecep-
tor tropism from R5 to D/M or X4 is frequently asso-
ciated with accelerated decrease in CD4 T-cell counts
and disease progression [5, 9, 10, 12, 45]. In contrast,
long-term non-progressors maintain virus strains with
exclusive tropism for R5 [57]. 

The reasons for the phenotypic switch which may
arise from a few changes in the sequence of  the HIV
env gene are unclear. It also remains also largely unex-
plained whether tropism shift is responsible for dis-
ease progression or whether it emerges as a conse-
quence of  progressive immune deficiency. Many au-
thors postulated that the phenotypic switch is possibly
a function of  both viral and host factors and that low
CD4 T-cell counts may be both a cause and an effect
of  X4 strain dominance [25, 30]. Moreover, it should
be mentioned that the shift from R5 towards X4
strains is not a prerequisite for disease progression.
Approximately half  of  the patients do never experi-
ence a shift during the natural course of  the disease
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and pure R5 strains may show considerable variation
in their cytopathologic properties and replicative fit-
ness [24, 28].

CORECEPTOR TROPISM OF TRANSMITTED HIV
AND DURING ACUTE INFECTION

In general, R5 strains seem to be more efficiently
transmitted than X4 strains. The predominance of  R5
strains during acute HIV infection is independent
from the route of  HIV transmission [54, 58]. Individ-
uals who do not express functional CCR5 coreceptors
because of  a mutation in the CCR5-encoding gene are
largely protected from HIV-1 infection despite the
presence of  functional CXCR4 coreceptors [12, 34,
44, 56]. Many mechanisms have been postulated to ex-
plain the preferential transmission of  R5 strains.
These include barriers at mucosal sites which may se-
lect against X4 strains but also specific humoral and
cellular immune responses which may inhibit viral
replication of  X4 strains more effectively. Recently it
has been postulated that the preferential transmission
of  R5 strains depends on the superimposition of  mul-
tiple mechanisms rather than of  one crucial
'gatekeeper' mechanism [35]. 

It should be noted that strains found in acute HIV
infection are not exclusively R5. In a large cohort
study on men who have sex with men from six major
cities in the United States, X4 strains were found in 4
out of  195 samples collected within six months of
HIV-1 seroconversion [18]. Among 296 Spanish HIV-
1 seroconverters, X4 strains (either pure or D/M)
were recognized even in 17.2 % of  the patients. Of
note, drug resistance mutations did not seem to influ-
ence coreceptor tropism [11]. 

CHRONICALLY HIV-INFECTED PATIENTS NAIVE
TO ANTIRETROVIRAL THERAPY

Several cross-sectional studies have addressed core-
ceptor tropism in chronically HIV-infected patients
naive to antiretroviral therapy [7, 14, 23, 37]. The re-
sults indicate that in this patient population, R5 strains
are present in 80-90 % (Table 1). Virtually all the re-
maining strains are D/M; exclusive X4 strains are very
rare in untreated HIV-infected patients.

In the largest study to date, pretherapy plasma sam-
ples from 1191 individuals initiating antiretroviral
therapy in British Columbia, Canada, were analysed by

a phenotypic assay [7]. Of  the 979 subjects in which
tropism data were available, 81.8 % harboured R5 vari-
ants while 18.1 % harboured D/M variants. Only 1 pa-
tient (0.1 %) harboured exclusively X4. There was a
strong association between the detection of  D/M
variants and the absolute CD4 cell count at baseline
which is illustrated in Figure 1. 

In multivariate analyses, predictors of  D/M variants
were low CD4 T-cell count (OR, 1.53 per 100-cell/µl
decrement, p < 0.0001), a high baseline plasma
viremia (OR, 1.46 per log10 increment, p = 0.04) and
the heterozygous CCR5 wt/Δ32 genotype (OR, 2.48;
p = 0.0005). Sex, age, history of  injection drug use or
a previous AIDS diagnosis were not associated with
coreceptor tropism. The results were largely con-
firmed by another large investigation from the Chelsea
and Westminster Hospital in London [37]. Beside
higher absolute CD4 cell counts and lower plasma
viremia, in this study, a lower natural killer cell count
was also associated with the presence of  R5 strains. 

Taken together, prevalence of  R5 strains approxi-
mate 80-90 % in HIV-infected patients naive to anti-
retroviral therapy. Although high baseline CD4 T-cell
counts and low plasma viremia may enhance the prob-
ability of  the presence of  R5 strains in an individual
patient, in all studies, R5 and D/M strains were found
at all CD4 T-cell strata. Thus, screening for coreceptor
tropism will remain necessary before the treatment
with CCR5 coreceptor antagonists in antiretroviral
naive patients.
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Table 1. Frequency of coreceptor tropism and factors associated with presence of D/M in chronically HIV-infected patients
naive to antiretroviral therapy. In all studies, phenotypic assays were used to assess coreceptor tropism.

Reference        n             R5           D/M       Factors associated with presence of D/M
                                      (%)            (%)

14                  299          88.0           12.0        Low CD4/CD8 ratio 

7                    979         81.8           18.2        Low CD4 T-cells, high HIV plasma viremia, heterozygous CCR5 wt/Δ32 genotype

37                  402          81.1           18.9        Low CD4 T-cells, high HIV plasma viremia, higher natural killer cell counts

23                  294          89.1           10.9        Low CD4 T-cells, Hispanic origin

Fig. 1. Percentages of R5 strains (dark) and of D/M strains
(white) within different CD4 T-cell strata (cells/µl). All pa-
tients were naive to antiretroviral therapy (adapted from [7]).

%



PATIENTS WITH EXPOSURE TO ANTIRETROVIRAL
THERAPY

Compared to treatment-naive patients, in subjects with
previous exposure to antiretroviral therapy, D/M or
X4 strains are more common. Several large studies
have adressed this issue, a selection is depicted in
Table 2.

The lowest percentage of  R5 strains was found in
an analysis of  the baseline samples of  the two TORO
trials [36]. Within these worldwide randomized phase
III studies, patients with extensive exposure to anti-
retroviral therapy had been treated with enfuvirtide or
not. Inclusion criteria were an HIV plasma viremia of
> 5.000 copies/ml and at least 3-6 months of  therapy
with at least 1 NRTI, 1 NNRTI, and at least 2 PI or
documented resistance to these drugs or both. Less
than half  of  the 724 patients for which phenotyping
of  the baseline samples were available had R5 strains
at baseline. The presence of  D/M strains was associat-
ed with significantly lower CD4 T-cell counts but simi-
lar plasma viremia, compared with R5 strains. 

Similar findings were made in ACTG 5211, a Phase
IIb study on the CCR5 coreceptor antagonist vicrivi-
roc in 391 pretreated patients [55]. In this trial, also
only approximately 50 % of  the patients harboured R5
strains. In 46 % D/M strains were present whereas 4
% of  the patients harboured pure X4 strains. On mul-
tivariate analysis, only the baseline CD4 T cell count
remained significantly associated with coreceptor tro-
pism. Subjects in the D/M group had significantly
lower CD4 T-cell counts than subjects in the R5
group. Interestingly, the 16 subjects with pure X4
strains had a median plasma HIV-1 RNA level that
was significantly lower than that of  subjects with R5
strains or D/M strains. The median screening CD4 T-
cell count for subjects with X4 strains was not signifi-
cantly different than that of  subjects with R5 strains
or D/M strains. No other characteristics were found
to be independently associated with the presence of
pure X4 strains. 

The results of  a recent published study illustrate the
importance of  tropism testing in treatment-experi-
enced patients. Out of  451 patients screened in the
VICTOR-E1 study which examined the use of  vicrivi-
roc in heavily pretreated patients, only 116 subjects

could be enrolled in this trial [48]. Of  the 335 screen-
ing failures, 53 % were due to the presence of  D/M or
X4 strains. In this study, D/M or X4 strains at screen-
ing were significantly associated with lower mean CD4
counts than R5 virus, but not associated with viral
load, number of  resistance mutations, age, sex or non-
B clade. In VICTOR-E1, in which about half  of  all
screened subjects were from Brazil, the proportion of
R5 strains was similar between patients from North
America and rest of  the world. 

Taken together, R5 strains are found in around 50-
55 % of  patients with exposure to antiretroviral thera-
py, indicating that at best half  of  this patient popula-
tion would have had a benefit from treatment with
CCR5 coreceptor antagonists. As in treatment naive
patients, CD4 T-cell count seems to be the strongest
predictor of  coreceptor tropism. However, R5 and
D/M strains are also found at all CD4 T-cell strata.
The level of  HIV plasma viremia does not appear to
be associated with coreceptor tropism, by contrast
with the findings in treatment naive patients. 

IMPACT OF ANTIRETROVIRAL THERAPY ON THE
EPIDEMIOLOGY OF CORECEPTOR TROPISM

Maraviroc and vicriviroc are currently the most pro -
mising compounds of  the new class of  CCR5 core-
ceptor antagonists. One hypothetical but potentially
important consequence of  the administration of  these
compounds is the selection of  X4 strains. The clinical
experiences and the implications of  a tropism shift
seen with CCR5 coreceptor antagonists will be de-
scribed elsewhere in this issue [3, 43]. 

Data on coreceptor tropism changes during “classi-
cal” antiretroviral therapy (without the use of  CCR5
coreceptor antagonists) is inconclusive. As described
above, frequency of  D/M strains is higher in patients
with exposure to antiretroviral therapy. However,
based on the design of  these cross-sectional studies it
is not possible to draw definitive conclusions about
the effect of  antiretroviral therapy on the evolution of
coreceptor tropism. Moreover, data of  longitudinal
studies have shown inconsistent results. While some
authors reported that antiretroviral therapy preferen-
tially suppresses X4 and induces a shift towards R5
strains [22, 40, 46], others found that coreceptor tro-
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Table 2. A selection of large studies evaluating coreceptor tropism in chronically HIV-infected patients with exposure to anti-
retroviral therapy. 

Reference           n            Study acronym (drug tested)                        R5           D/M          X4
                                                                                                             %              %              %

36                      724         TORO 1 and TORO 2 (enfuvirtide)          49.9           47.9           2.2

55                      391          ACTG 5211 (vicriviroc)                             50.4           45.5           4.1

48                      451          VICTOR E1 (vicriviroc)*                           54.0           42.0           5.0

32, 38              2.560         MOTIVATE 1 and 2 (maraviroc)*             56.0           44.0           NA

27                      182          Cohort study                                              58.8           40.6           0.6

*Incomplete data provided in these preliminary publications, NA = not available



pism remained stable during antiretroviral therapy [33,
53]. Contrasting these findings, one longitudinal geno-
typic analysis of  HIV in cellular reservoirs in 32 pa-
tients with undetectable viral loads on antiretroviral
therapy for five years revealed that there was a switch
from R5 to X4 strains in 11 of  the 23 patients with R5
strains at baseline [13]. X4 strains remained predomi-
nant in patients who harbored mainly X4 strains at
baseline. These results of  this study suggest that po-
tent antiretroviral therapy produces the conditions
necessary for the gradual emergence of  X4 strains in
cellular reservoirs. 

CORECEPTOR TROPISM OF DIFFERENT HIV
CLADES

While the majority of  the above-cited studies focussed
on HIV-1 clade B, data on coreceptor tropism of  Non-
B clades of  HIV-1 and of  HIV-2 is are limited. How-
ever, except for some studies reporting on a high fre-
quency of  D/M strains in antiretroviral drug naïve
Ugandan women infected with HIV-1 clade D [26] and
a lower frequency of  X4 strains in clade C [52], most
studies published to date did not find significant epi-
demiological differences of  coreceptor tropism of
Non-B clades or HIV-2 when compared to HIV-1 B
clades [8, 31, 37, 41, 50]. However, numbers of  ana -
lysed subjects are too low to draw definite conclusions.

CORECEPTOR TROPISM IN DIFFERENT
COMPARTMENTS

There are several studies reporting on discordant core-
ceptor tropism in different compartments such as
brain and the genital tract. There is at least one study
reporting on discordant coreceptor tropism in the
cerebrospinal fluid and plasma which may have impli-
cations for therapy with CCR5 coreceptor antagonists
[47]. Other studies revealed discordant coreceptor tro-
pism and genetic compartmentalization of  HIV be-
tween plasma and gut, vaginal secretions or semen [2,
23, 39]. However, the clinical relevance of  these obser-
vations remains to be elucidated.

In conclusion, the prevalence of  R5, X4 and D/M
strains shows considerable variation in different pa-
tient populations. In treatment naive patients, R5
strains are found in 80-90 %, compared to only 50-55
% in patients with antiretroviral exposure. Although
high baseline CD4 T-cell counts and low plasma
viremia may enhance the probability of  the presence
of  R5 strains in an individual patient, R5 and D/M
strains are found at all CD4 T-cell strata. As the bene-
fit of  the CCR5 coreceptor antagonists will be proba-
bly limited to the HIV-infected patients harbouring R5
strains, in every patient for whom this new antiretrovi-
ral drug class is considered, determination of  viral
coreceptor tropism is an important diagnostic prereq-
uisite. 
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